

A Hierarchical Load Balanced Fault tolerant Grid Scheduling

Algorithm with User Satisfaction

1
KEERTHIKA P,

2
SURESH P

Assistant Professor (Senior Grade), Department on Computer Science and Engineering

Assistant Professor (Senior Grade), Department on Information Technology

Kongu Engineering College

Perundurai, Erode, Tamilnadu

INDIA
1keerthikame@gmail.com,

2
sureshme@gmail.com

Abstract: - The human civilization advancements lead to complications in science and engineering.

Dealing with heterogeneous, geographically distributed resources, grid computing acts as a technology to

solve these complicated issues. In grid, scheduling is an important area which needs more focus. This

research proposes a hierarchical scheduling algorithm and the factors such as load balancing, fault

tolerance and user satisfaction are considered. The proactive fault tolerant approach used here achieves

better hit rate. The hierarchical scheduling methodology proposed here results in reduced communication

overhead and the user deadline based scheduling results in better user satisfaction when compared to the

algorithms which are proposed recent based on these factors. The tool used to evaluate the efficiency of

this hierarchical algorithm with other existing algorithms is gridsim. The overall system performance is

measured using makespan and it proves to be better for the proposed hierarchical approach.

Key-Words: - Communication overhead, Resource utilization, Load balancing, Fault tolerance,

Hierarchical scheduling, User satisfaction.

1 Introduction
Grid computing is a computing paradigm developed

to meet the ever increasing computational demands

of many applications with increasing number of

processors. Grid can be of two types based on its

functionality – computational grids and data grids. A

computational grid is a hardware and software

infrastructure that provides dependable, pervasive,

consistent and inexpensive access to high end

computational capabilities. Computational grids are

accessible to their users via single interface. They

merge extremely heterogeneous resources into a

single virtual resource. When data storage is taken as

the requirement for establishment of grid, it is termed

as data grid, used for data intensive applications

which need access, transfer and modification of

datasets. Some of the characteristics of computational

grid fall as heterogeneity, dynamicity, scalability and

reliability.

 The components of a grid system are

scheduler, load balancer, grid broker and portals. The

scheduler is responsible for management and

allocation of tasks to the fittest resource, partitioning

of tasks in order to schedule parallel execution. The

load balancer is another component that is

responsible for workload distribution in a balanced

manner and this should always be considered to

avoid over commitment of resources. The resource

broker pairs services between service provider and

service requester. Scheduling can be static or

dynamic. Dynamic scheduling can be explained in

terms of task execution of resources. Another way of

categorizing the scheduling algorithm based on their

resource management are centralized scheduling, de-

centralized scheduling and hierarchical scheduling.

In decentralized scheduling, there is no central entity

control on resources. Local schedulers play a vital

role in scheduling. In centralized scheduling, a

central entity is responsible for maintaining and

scheduling the resources. This suffers with single

point of failure and low scalability. This type of

scheduling is not appropriate for large scale grids.

Since the control over the resources is more, this is

more efficient when compared with decentralized

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 15 Volume 14, 2015

mailto:keerthikame@gmail.com
mailto:sureshme@gmail.com

scheduling. In hierarchical scheduling, different

schedulers coordinate at certain level. This type of

scheduling lacks in fault tolerance but highly fault

tolerant than centralized scheduling. The modes of

scheduling are batch mode and immediate mode. In

immediate mode scheduling, a task is scheduled as

soon as it enters the system. In batch mode

scheduling, tasks that enters the system are grouped

in batches and scheduled at certain time intervals.

The work proposed in this research is an initiative to

develop an efficient fault tolerant load balanced

algorithm with user satisfaction. Currently there are

many scheduling algorithms that deals with user

satisfaction, fault tolerance, load balancing

separately. Till now there is no such algorithm that

serves combined for all these factors which are very

much essential for a better scheduling. The proposed

algorithm combines all these factors and proves its

efficiency.

2 Literature Survey
The grid environment consists of dynamic and

heterogeneous resources. These resources changes

with time i.e., any new resource can join or any of

the old resources can exit the grid environment at any

time. Due to uneven job arrival patterns and unequal

computing capabilities, some resources in the grid

environment get overloaded or some resources get

under loaded or some resources remain idle. The

occurrences of resource failures are high due to the

resource characteristics. Both load balancing and

resource failures degrade the system performance

and also user satisfaction.

 A dynamic, distributed load balancing

scheme for a grid environment which provides

deadline control for tasks is proposed in [1]. The grid

broker assigns gridlets between the resources based

on the deadline request. Periodically the resources

check their state and make a request to the Grid

Broker according to the change of state in load. Then,

the Grid Broker assigns Gridlets between resources

and scheduling for load balancing under the deadline

request.

 A new grouping based scheduling

algorithm that takes user satisfaction into account is

proposed in [2]. In this approach, grouping of fine

grained jobs to coarse grained jobs and scheduling

those coarse grained jobs based on the deadline is

done.

 A dynamic load balancing mechanism

proposed in [3], provides application level load

balancing for individual parallel jobs. It ensures that

all loads submitted through the dynamic load

balancing environment are distributed in such a way

that the overall load in the system is balanced and

application programs get maximum benefit from

available resources.

 A layered load balancing algorithm

based on the tree model representation is proposed in

[4]. This model consists of three main features: (i) it

is layered (ii) It supports heterogeneity and

scalability (iii) It is totally independent of any

physical architecture of grid. The neighbourhood

load balancing strategy is used to decrease the

amount of messages exchanged between grid

resources. As a consequence, the communication

overhead induced by task transfer and workload

information flow is reduced, leading to a high

improvement in the global throughput of a grid.

The load balancing mechanism for

optimal load distribution in a non-dedicated cluster or

grid computing system with heterogeneous servers

processing both generic and dedicated applications

was proposed in [5]. Since each dedicated task has a

designated server, load distribution is only applied to

generic tasks. So, the goal of load balancing

mechanism is to find an optimal load distribution

strategy for generic tasks on heterogeneous servers

preloaded by different amount of dedicated tasks

such that the overall average response time of generic

applications is minimized.

An echo system which creates ants on

demand to achieve load balancing during their

adaptive lives is proposed in [6]. They may bear

offspring when they sense that the system is

drastically unbalanced and commit suicide when they

detect equilibrium in the environment. These ants

care for every node visited during their steps and

record node specifications for future decision

making.

A hybrid load balancing algorithm is

proposed in [7]. The tasks will be placed in a task

queue. The instantaneous scheme, the First-Come-

First-Served (FCFS) of the hybrid scheduler

functions to find the earliest completion time of each

task individually. If the system workload grows

heavy, (i.e., more tasks are waiting in the queue) then

the scheduler a chance to performs load balancing.

Then the tasks are shifted to other system so that the

overloaded condition can be avoided. A system level

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 16 Volume 14, 2015

load balancing is proposed in [8] which are two

folds: First, a distributed load balancing model,

transforming any grid topology into a forest

structure. Second, a two level strategy is proposed to

balance the load among resources of computational

grid.

 A hybrid load balancing policy is

proposed in [9] which integrate static and dynamic

load balancing technologies. Essentially, a static load

balancing policy is applied to select effective and

suitable node sets. This will lower the unbalanced

load probability caused by assigning tasks to

ineffective nodes. When a node reveals the possible

inability to continue providing resources, the

dynamic load balancing policy will determine

whether the node in question is ineffective to provide

load assignment. The system will then obtain a new

replacement node within a short time, to maintain

system execution performance.

 A Dynamic Load Balancing Algorithm

based on resource type policy [10]. This algorithm

makes changes to the distribution of work among

workstations at run-time; it uses current or recent

load information when making distribution decisions.

Multi computers with dynamic load balancing

allocate/reallocate resources at runtime based on a

priori task information, which may determine when

and whose tasks can be migrated. A dynamic and a

distributed protocol is proposed in [11]. The grid is

partitioned into a number of clusters. Each cluster has

a coordinator to perform local load balancing

decisions and also to communicate with other cluster

coordinators across the grid to provide inter-cluster

load transfers. The distributed protocol uses the

clusters of the Grid to perform local load balancing

decision within the clusters and if this is not possible,

load balancing is performed among the clusters under

the control of cluster heads called the coordinators.

 A Load Balanced Min-Min algorithm is

proposed in [12] which reduces the makespan and

increases the resource utilization. This algorithm

consists of two-phases. In the first phase, the Min-

Min algorithm is executed and in the second phase,

the tasks in the overloaded resources are rescheduled

to use the unutilized resources. A load balancing

approach based on Enhanced GridSim architecture is

proposed in [13]. The Machine entity in GridSim 4.0

is treated as a dump entity object in and is not able to

participate in any decision making activities. In

Enhanced GridSim architecture, the Machine Entity

is made as active so, it participates in load balancing.

The grid environment is considered as three levels:-

Resource Broker level, Machine level, Processing

Entity level. Grid Broker is the top manager of a grid

environment which is responsible for maintaining the

overall grid activities of scheduling and rescheduling.

It gets the information of the work load from grid

resources. It sends the tasks to resources for

optimization of load. Resource is next to grid Broker

in the hierarchy. It is responsible for maintaining the

scheduling and load balancing of its machines. Also,

it sends an event to grid broker if it is overloaded.

Machine is a Processing Entity (PE) manager. It is

responsible for task scheduling and load balancing of

its PEs. Also, it sends an event to resource if it is

overloaded. When a new job arrives at a

machine, it submits it to a PE, which is lightly

loaded. Before submitting the job, the expected

status of the PE after the job submission is predicted.

If the submission of the job turns the underloaded PE

to overloaded PE then the job is assigned to some

other underloaded PE, which may not become

overloaded due to its submission. If any of the PE is

overloaded, then the few tasks in overloaded PE are

shifted to other underloaded PE to avoid the

overloaded condition. By this way the load is

balanced at Machine level. The same procedure is

followed at Resource level and Broker level to

balance the load in the grid environment.

 A fault tolerant hybrid load balancing

algorithm is proposed in [14]. This algorithm is

carried out in two phases: Static load balancing and

dynamic load balancing. In the first phase, a static

load balancing policy selects the desired effective

sites to carry out the submitted job. If any of the sites

is unable to complete the assigned job, a new site will

be located using the dynamic load balancing policy.

The assignment of jobs must be adjusted dynamically

in accordance with the variation of site status.

 A load balancing mechanism, which is

proposed in [15], works in 2 phases: In the first

phase, job allocation is done based on a defined

criterion i.e., the heuristic begins with the set of all

unmapped tasks. Then the set of minimum

completion times is found, like Min-min heuristic. In

second phase, heuristic algorithm works based on

machines workload, which consists of 2 steps. In the

first step, for each task the minimum, second

minimum completion time and minimum execution

time are found. Then the difference between these

two minimum completion time values is multiplied

by the amount of minimum completion time and then

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 17 Volume 14, 2015

divided by minimum execution time. In the second

step, if the number of the remaining tasks is not less

than threshold, then the heuristic algorithm is

executed to balance the load. Finally, the task which

has the criteria value as maximum will be selected

and removed from the set of unmapped tasks.

 An Augmenting Hierarchal Load

Balancing algorithm is proposed in [16]. To evaluate

the load of the cluster, probability of deviation of

average system load from average load of cluster is

calculated and checked for the confinement within a

defined range of 0 to 1. The fittest resources are

allocated to the jobs by comparing the expected

computing power of the jobs with the average

computing power of the clusters.

 A Failure Detection Service (FDS)

mechanism and a flexible failure handling framework

is proposed in [17]. The FDS enables the detection of

both task crashes and user-defined exceptions. The

Grid-WFS is built on top of FDS, which allows users

to achieve failure recovery in a variety of ways

depending on the requirements and constraints of

their applications. The resources are modeled based

on the system reliability. Reliability of a grid

computing resource is measured by mean time to

failure (MTTF), the average time that the grid

resource operates without failure. Mean time to

repair (MTTR) is the average time it takes to repair

the Grid computing resource after failure. The MTTR

measures the downtime of the computing resource.

 Various fault recovery mechanisms such

as checkpointing, replication and rescheduling are

discussed in [18]. Taking checkpoints is the process

of periodically saving the state of a running process

to durable storage. This allows a process that fails to

be restarted from the point its state was last saved, or

its checkpoint on a different resource. Replication:

Replication means maintaining a sufficient number

of replicas, or copies, of a process executing in

parallel on different resources so that at least one

replica succeeds.

 In [19], it is described that the fault tolerance

is an important property in order to achieve

reliability. Reliability indicates that a system can run

continuously without failure. A highly reliable

system is the one that continues to work without any

interruption over a relatively long period of time. The

fault tolerance is closely related to Mean Time to

Failure (MTTF) and Mean Time between Failures

(MTBF). MTTF is the average time the system

operates until a failure occurs, whereas the MTBF is

the average time between two consecutive failures.

The difference between the two is due to the time

needed to repair the system following the first failure.

Denoting the Mean Time to Repair by MTTR, the

MBTF can be obtained as MTBF=MTTF +

MTTR.

 A check pointing mechanism is proposed in

[20] to achieve fault tolerance. The check pointing

process periodically saves the state of a process

running on a computing resource so that, in the event

of resource failure, it can resume on a different

resource. If any resource failure happens, it invokes

the necessary replicas in order to meet the user

application reliability requirements.

 In our previous work [21], we have proposed

an efficient fault tolerant scheduling algorithm

(FTMM) which is based on data transfer time and

failure rate. System performance is also achieved by

reducing the idle time of the resources and

distributing the unmapped tasks equally among the

available resources. A scheduling strategy that

considers user deadline and communication time for

data intensive tasks with reduced makespan, high hit

rate and reduced communication overhead is

introduced in [22]. This strategy does not consider

the occurrence of resource failure.

 In our previous work [23], we have proposed

a new Bicriteria scheduling algorithm that considers

both user satisfaction and fault tolerance. The pro-

active fault tolerant technique is adopted and the

scheduling is carried out by considering the deadline

of gridlets submitted. The main contribution of this

paper includes achieving user satisfaction along with

fault tolerance and minimizing the makespan of jobs.

In our previous work [24], we have proposed a multi-

criteria scheduling algorithm that considers load

balancing, fault tolerance and user satisfaction as a

centralized approach.

A Prioritized user demand algorithm is

proposed in [25] that considers user deadline for

allocating jobs to different heterogeneous resources

from different administrative domains. It produces

better makespan and more user satisfaction but data

requirement is not considered. While scheduling the

jobs, failure rate is not considered. So the scheduled

jobs may be failed during execution. A work based

on user satisfaction and hierarchical load balancing is

proposed in [26] that considers user demands and

load balancing. It minimizes the response time of the

jobs and improves the utilization of the resources in

grid environment. By considering the user demand of

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 18 Volume 14, 2015

the jobs, the scheduling algorithm also improves the

user satisfaction.

The main contribution in this work is that a

hierarchical scheduling algorithm is proposed which

considers multiple constraints such as user deadline,

failure rate, load of resources and communication

overhead at the time of scheduling.

3 Materials and Methods

3.1 Problem Formulation
We have proposed a scheduling architecture in our

previous work which is for centralized scheduling of

resources. In this work, a hierarchical scheduling

architecture given below in figure 1 is followed. The

proposed hierarchical scheduling algorithm is static

following a batch mode of scheduling.

Fig.1 Hierarchical Scheduling

Architecture

3.2 Proposed Hierarchical Algorithm
In this work, a hierarchical scheduling methodology

is proposed. The tasks are expected to be submitted

by the user at different levels of hierarchy such as

machine, resource, grid broker. A machine is a

collection of processing elements (PE’s). A resource

is a collection of machines and a grid broker is a

collection of resources that has all the information

about the resources such as capacity, availability etc.

The hierarchy followed here is similar to the

hierarchy followed by gridsim which is given below

in figure 2.

Fig.2 GridSim Architecture

 The scheduling algorithm takes load of PE’s,

average load of machines, average load of resources

and average load of the system as factors in deciding

the applicable resource/machine/PE in order to

balance the load of the grid system. The factors such

as user deadline of tasks submitted by the user are

considered at the time of scheduling in order to

achieve user satisfaction. The calculation of load of

each PE, machine and resource becomes essential

since scheduling is carried out at three levels. Load

of each PE is calculated using the formula

𝐿𝑜𝑎𝑑 𝑃𝐸𝑖 =
 𝑀𝐼𝑗

𝑚
𝑗=0

𝑀𝐼𝑃𝑆𝑖 × 𝐴𝑇𝑖
 (1)

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 19 Volume 14, 2015

where m is the number of tasks allocated to 𝑃𝐸𝑖 and

𝐴𝑇𝑖 is the availability time of 𝑃𝐸𝑖 . Load of each

Machine is calculated using the formula

𝐿𝑜𝑎𝑑 𝑀𝑖 = 𝐿𝑜𝑎𝑑 𝑃𝐸𝑗

𝑛

𝑗=0

 (2)

where 𝑗 is the number of tasks submitted to PEs

under that machine. Load of each resource is

calculated using the formula

𝐿𝑜𝑎𝑑 𝑅𝑖 = 𝐿𝑜𝑎𝑑 𝑀𝑗

𝑛

𝑗=0

 (3)

where 𝑗 is the number of tasks submitted to PEs

under that resource. The average load of each

machine is calculated by,

𝐴𝐿 𝑀𝑖 =
 𝐿𝑜𝑎𝑑 𝑃𝐸𝑘

𝑛
𝑘=1

𝑛
 (4)

The average load of each resource is calculated by,

𝐴𝐿 𝑅𝑖 =
 𝐴𝐿 𝑀𝑘

𝑛
𝑘=1

𝑛
 (5)

and the average load of grid broker is calculated by,

𝐴𝐿 𝐺𝐵𝑖 =
 𝐴𝐿 𝑅𝑘

𝑛
𝑘=1

𝑛
 (6)

After calculating the load and average load, the

balance threshold is calculated in order to categorize

the resources as overloaded, underloaded and

normally loaded. The balance threshold is calculated

at machine level by using the formula,

Ω𝑀 = 𝐴𝐿 𝑀𝑖 + 𝜎𝑀 (7)

At resource level, the balance threshold is calculated

as,

Ω𝑅 = 𝐴𝐿 𝑅𝑖 + 𝜎𝑅 (8)

The balance threshold at grid broker level is

calculated as,

Ω𝐺𝐵 = 𝐴𝐿 𝐺𝐵𝑖 + 𝜎𝐺𝐵 (9)

where 𝜎𝑀, 𝜎𝑅, 𝜎𝐺𝐵 are the deviation factors at

machine, resource and grid broker levels

respectively. At machine level, the deviation factor

can be calculated by,

𝜎𝑀 = 𝐿𝑜𝑎𝑑 𝑃𝐸𝑖 − 𝐴𝐿 𝑀𝑖
2𝑁

𝑖=1

𝑁
 (10)

At resource level, the deviation factor is calculated

by,

𝜎𝑅 = 𝐿𝑜𝑎𝑑 𝑀𝑖 − 𝐴𝐿 𝑅𝑖
2𝑁

𝑖=1

𝑁
 (11)

and at the grid broker level, the deviation factor is

given by,

𝜎𝐺𝐵 = 𝐿𝑜𝑎𝑑 𝑅𝑖 − 𝐴𝐿 𝐺𝐵𝑖
2𝑁

𝑖=1

𝑁
 (12)

 The hierarchical scheduling algorithm is

given in Algorithm 1. It works as follows. If a task is

submitted by the user at machine level which is the

lower level in the hierarchy, then the scheduling

algorithm works for the PE’s under that machine.

Whenever a task is submitted at resource level, they

are scheduled to the PE’s under the machines which

are under that particular resource. When a task is

submitted at the grid broker level which is the higher

level of hierarchy, they are scheduled to the resources

under that grid broker. If the tasks at any level is

failed to be scheduled, then it is sent to its higher

level of the hierarchy and scheduled. The balance

threshold is very important in deciding whether a

resource is over loaded, under loaded or normally

loaded. After categorizing the resources, the

resources which are underloaded are considered for

scheduling. This is illustrated with equations 7, 8, 9,

10, 11 and 12.

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 20 Volume 14, 2015

For all tasks 𝑀𝑇𝑖 submitted at Machine level,

 Perform possible allocation to the tasks in the list of PE’s under that machine using algorithm 2.

If 𝑀𝑇𝑖 is not empty,

 Submit the tasks in 𝑀𝑇𝑖 list to the next upper level of the hierarchy 𝑅𝑇𝑖

For all tasks 𝑅𝑇𝑖 submitted at Resource level,

 Perform possible allocation to the tasks in the list of PE’s under that resource using algorithm 3.

If 𝑅𝑇𝑖 is not empty,

 Submit the tasks in 𝑅𝑇𝑖 list to the next upper level of the hierarchy 𝐺𝐵𝑇𝑖

For all tasks 𝐺𝐵𝑇𝑖 submitted at Grid Broker level,

 Perform possible allocation to the tasks in 𝐺𝐵𝑇𝑖 to the list of PE’s under that Grid Broker using

algorithm 4.

If 𝐺𝐵𝑇𝑖 is not empty,

 Increment 𝐽𝑓 which is the number of tasks not scheduled.

Algorithm 1: Hierarchical Scheduling Algorithm

1. Get the list of tasks 𝑀𝑇𝑖 with their user deadline 𝑈𝐷𝑖 .

2. Get the list of PE’s under that machine from GIS.

3. Construct 𝐸𝑇𝐶 𝑇𝑖 , 𝑅𝑗 matrix of size 𝑚 × 𝑛 where m is the number of tasks and n is the number of PE’s

under that machine where the tasks are submitted.
4.

4. For all 𝑃𝐸𝑗 in the list,

4.1 Calculate failure rate 𝐹𝑅 𝑅𝑗 where 𝑅𝑗 represents 𝑃𝐸𝑗

4.2 Calculate 𝑅𝑇 𝑅𝑗 is the number of tasks submitted to 𝑅𝑗 .

4.3 Calculate Load of PE’s, Average load of machine.

5. Calculate balance threshold at machine level

6. Create a list of underloaded PE’s (UP) which has 𝐿𝑜𝑎𝑑 𝑃𝐸𝑖 < Ω𝑀 .

7. For each task 𝑇𝑖 in 𝑀𝑇𝑖 in queue and for each 𝑃𝐸𝑗 ,

Construct 𝐶𝑇 𝑇𝑖 , 𝑅𝑗 , 𝐷𝑇 𝑇𝑖 , 𝑅𝑗 , 𝑇𝐶𝑇 𝑇𝑖 , 𝑅𝑗 matrix of size 𝑚 × 𝑛

8. For all task 𝑇𝑖 in 𝑀𝑇𝑖

8.1 Create list 𝑈𝑇𝑖1
 and 𝑈𝑇𝑖2

 with PE’s that has 𝑇𝐶𝑇 𝑇𝑖 , 𝑅𝑗 ≤ 𝑈𝐷𝑇𝑖
 and 𝑇𝐶𝑇 𝑇𝑖 , 𝑅𝑗 > 𝑈𝐷𝑇𝑖

respectively.

8.2 Sort 𝑈𝑇𝑖1
 and 𝑈𝑇𝑖2

 based on 𝐹𝑅 𝑅𝑗 of resources in ascending order

8.3 Create lists 𝑈𝐿𝑇𝑖1 and 𝑈𝐿𝑇𝑖2
 with the set of underloaded resources from 𝑈𝑇𝑖1

 and

𝑈𝑇𝑖2
 respectively in order.

8.4 If entries in 𝑈𝐿𝑇𝑖1
,

Select the first resource in the list for task 𝑇𝑖 and dispatch 𝑇𝑖 to resource 𝑅𝑗 and Increment

Deadline Hit Count and Hit Count.

else if entries in 𝑈𝐿𝑇𝑖2
,

 Select the first resource in the list for task 𝑇𝑖 and dispatch 𝑇𝑖 to resource 𝑅𝑗 and Increment

 Hit Count.

8.5 Remove task 𝑇𝑖 from Task_list 𝑀𝑇𝑖 .

8.6 Update 𝑅𝑇 𝑅𝑗 and 𝐹𝑅 𝑅𝑗 where j is the PE to which the task 𝑇𝑖 is dispatched.

9. If there are tasks in Task_list 𝑇,

Repeat steps from 4.3.

Endif

Algorithm 2: Scheduling at Machine Level

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 21 Volume 14, 2015

The scheduling algorithm at the machine level is

given in algorithm 2. The algorithm works as

follows. The machine receives the tasks with user

deadline 𝑈𝐷 𝑇𝑖 . The task’s information such as its

length in MI is used to calculate the execution time

𝐸𝑇𝐶 𝑇𝑖 , 𝑅𝑗 of each task in each of the available

resources. With the ready time information 𝑅𝑇 𝑅𝑗

available for each resource at GIS, the algorithm

calculates the completion time 𝐶𝑇 𝑇𝑖 , 𝑅𝑗 . The

failure information of resources such as number of

tasks submitted to a resource 𝑇𝑠𝑢𝑏 and number of

tasks successfully completed 𝑇𝑠𝑢𝑐𝑐 and number of

tasks not completed successfully 𝑇𝑓 is also available

in GIS which helps in calculating the failure

rate 𝐹𝑅 𝑅𝑗 .

 The list of resource in which the task

gets completed within user deadline is collected for

each task and they are sorted based on their failure

rate. Based on the balance threshold, the resources

are categorized as overloaded and underloaded and

finally the load is balanced by submitting the task to

the underloaded resource. When a resource is

assigned a task, the load of each resource and system,

balance threshold, failure rate and ready time are

recalculated. The same procedure is repeated for all

tasks till the task list becomes empty.

 The scheduling algorithm at resource

level and grid broker level is given in algorithm 3

and 4 respectively.

4 Results and Discussion

4.1 Experimental Environment
The simulation is based on the scheduling

architecture in Figure 1. The number of PE’s and

tasks considered is 16 and 512 respectively. The

number of machines ranges from 1 to 4 and number

of PEs per machine ranges from 1 to 2. The 16 PE’s

are grouped to form number of machines and

machines are grouped to form resources which are

again grouped and controlled by resource/grid

broker.

 The factors considered in designing this

algorithm are user satisfaction, which can be

evaluated using deadline hit count, fault tolerance,

which can be evaluated using hit count, load

balancing, which can be evaluated using average

resource utilization and when these are applied in a

hierarchical manner, it is evaluated using

communication time and as a whole the system

performance is improved, which can be evaluated

using makespan. The performance metrics such as

makespan, hit count, deadline hit count and average

resource utilization are defined below.

Makespan: Makespan is one of the most important

standard metric of grid scheduling to measure its

performance. It is defined as the overall completion

time of a batch of tasks and is given by,

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥 𝑅𝑇 𝑅𝑗 , ∀ j ∊ n (13)

It is used to measure the ability of grid to

accommodate gridlets in less time.

Hit count: Hit count is a new metric introduced in

this chapter. It represents the number of tasks

successfully completed in a batch of tasks. Here,

each batch is assumed to have 512 tasks and the hit

count gives the number of tasks successfully

completed out of 512.

Deadline Hit Count: This is a new metric introduced

in this chapter which represents the number of tasks

successfully completed within the given user

deadline.

Average resource utilization: This metric is newly

introduced in order to measure the load balancing

which can be calculated as follows.

The utilization of each resource 𝑅𝑈 𝑅𝑗 can be

calculated by the Equation (14).

𝑅𝑈 𝑅𝑗 =
 𝑀𝐼𝑖

𝑚
𝑖=0

𝑀𝐼𝑃𝑆𝑗 × 𝐴𝑇𝑗
 × 100 (14)

The average resource utilization 𝐴𝑅𝑈 of the system

can be calculated using Equation (15).

𝐴𝑅𝑈 =
1

𝑁
 𝑅𝑈 𝑅𝑗

𝑁

𝑗=1

 (15)

where N is the number of resources.

Communication Time: In addition to these metrics,

this chapter introduces a new metric named

communication time which is the time taken for

transferring the tasks between different levels of

hierarchy.

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 22 Volume 14, 2015

 1. Get the list of tasks 𝑅𝑇𝑖 with their user deadline 𝑈𝐷𝑖 .

2. Get the list of PE’s under that resource from GIS.

3. Construct 𝐸𝑇𝐶 𝑇𝑖 , 𝑅𝑗 matrix of size 𝑚 × 𝑛 where m is the number of tasks and n is

the number of PE’s under that resource where the tasks are submitted.

4. For all 𝑃𝐸𝑗 in the list,

Do

4.1 Calculate failure rate 𝐹𝑅 𝑅𝑗 , where 𝑅𝑗 represents 𝑃𝐸𝑗

4.2 Calculate 𝑅𝑇 𝑅𝑗 where n is the number of tasks submitted to 𝑅𝑗 .

4.3 Calculate Load of machine, Average load of resource.

Done

5. Calculate balance threshold at resource level

6. Create a list of underloaded machine’s (UM) which has 𝐿𝑜𝑎𝑑 𝑀𝑖 < Ω𝑅.

7. For each task 𝑇𝑖 in 𝑅𝑇𝑖 in queue and for each 𝑃𝐸𝑗 ,

Do

 Construct 𝐶𝑇 𝑇𝑖 , 𝑅𝑗 , 𝐷𝑇 𝑇𝑖 , 𝑅𝑗 , 𝑇𝐶𝑇 𝑇𝑖 , 𝑅𝑗 matrix of size 𝑚 × 𝑛

Done

8. For all task 𝑇𝑖 in 𝑅𝑇𝑖
Do

8.1 Create list 𝑈𝑇𝑖1
 and 𝑈𝑇𝑖2

 with PE’s that has 𝑇𝐶𝑇 𝑇𝑖 , 𝑅𝑗 ≤ 𝑈𝐷𝑇𝑖

and

𝑇𝐶𝑇 𝑇𝑖 , 𝑅𝑗 > 𝑈𝐷𝑇𝑖
 respectively.

8.2 Sort 𝑈𝑇𝑖1
 and 𝑈𝑇𝑖2

 based on 𝐹𝑅 𝑅𝑗 of resources in ascending order

8.3 Create lists 𝑈𝐿𝑇𝑖1 and 𝑈𝐿𝑇𝑖2
 with the set of underloaded resources

from 𝑈𝑇𝑖1
 and 𝑈𝑇𝑖2

 respectively in order.

8.4 If entries in 𝑈𝐿𝑇𝑖1
,

Select the first resource in the list for task 𝑇𝑖 and dispatch

𝑇𝑖 to resource 𝑅𝑗 and Increment Deadline Hit Count and Hit

Count.

else if entries in 𝑈𝐿𝑇𝑖2
,

Select the first resource in the list for task 𝑇𝑖 and dispatch

𝑇𝑖 to resource 𝑅𝑗 and Increment Hit Count.

8.5 Remove task 𝑇𝑖 from Task_list 𝑅𝑇𝑖 .

8.6 Update 𝑅𝑇 𝑅𝑗 and 𝐹𝑅 𝑅𝑗 where j is the resource to which the task

𝑇𝑖 is dispatched.

Done

9. If there are tasks in Task_list 𝑇,

Repeat steps from 4.3.

Endif

Algorithm 3: Scheduling at Resource Level

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 23 Volume 14, 2015

1. Get the list of tasks 𝐺𝐵𝑇𝑖 with their user deadline 𝑈𝐷𝑖 .

2. Get the list of PE’s under that grid broker from GIS

3. Construct 𝐸𝑇𝐶 𝑇𝑖 , 𝑅𝑗 matrix of size 𝑚 × 𝑛 where m is the number of tasks and n is

the number of PE’s under that grid broker where the tasks are submitted.

4. For all 𝑃𝐸𝑗 in the list,

Do

4.1 Calculate failure rate 𝐹𝑅 𝑅𝑗 , where 𝑅𝑗 represents 𝑃𝐸𝑗

4.2 Calculate 𝑅𝑇 𝑅𝑗 where n is the number of tasks submitted to 𝑅𝑗 .

4.3 Calculate Load of resource, Average load of grid broker

Done

5. Calculate balance threshold at grid broker level

6. Create a list of underloaded resource’s (UR) which has 𝐿𝑜𝑎𝑑 𝑅𝑖 < Ω𝐺𝐵 .

7. For each task 𝑇𝑖 in 𝐺𝐵𝑇𝑖 in queue and for each 𝑃𝐸𝑗 ,

Do

 Construct 𝐶𝑇 𝑇𝑖 , 𝑅𝑗 , 𝐷𝑇 𝑇𝑖 , 𝑅𝑗 , 𝑇𝐶𝑇 𝑇𝑖 , 𝑅𝑗 matrix of size 𝑚 × 𝑛

Done

8. For all task 𝑇𝑖 in 𝐺𝐵𝑇𝑖
Do

8.1 Create list 𝑈𝑇𝑖1
 and 𝑈𝑇𝑖2

 with PE’s that has

 𝑇𝐶𝑇 𝑇𝑖 , 𝑅𝑗 ≤ 𝑈𝐷𝑇𝑖
 and 𝑇𝐶𝑇 𝑇𝑖 , 𝑅𝑗 > 𝑈𝐷𝑇𝑖

 respectively.

8.2 Sort 𝑈𝑇𝑖1
 and 𝑈𝑇𝑖2

 based on 𝐹𝑅 𝑅𝑗 of resources in ascending order

8.3 Create lists 𝑈𝐿𝑇𝑖1 and 𝑈𝐿𝑇𝑖2
 with the set of underloaded resources

from 𝑈𝑇𝑖1
 and 𝑈𝑇𝑖2

 respectively in order.

8.4 If entries in 𝑈𝐿𝑇𝑖1
,

Select the first resource in the list for task 𝑇𝑖 and dispatch

𝑇𝑖 to resource 𝑅𝑗 and Increment Deadline Hit Count and Hit

Count.

else if entries in 𝑈𝐿𝑇𝑖2
,

Select the first resource in the list for task 𝑇𝑖 and dispatch

𝑇𝑖 to resource 𝑅𝑗 and Increment Hit Count.

8.5 Remove task 𝑇𝑖 from Task_list 𝐺𝐵𝑇𝑖 .

8.6 Update 𝑅𝑇 𝑅𝑗 and 𝐹𝑅 𝑅𝑗 where j is the resource to which the task

𝑇𝑖 is dispatched.

Done

9. If there are tasks in Task_list 𝑇,

Repeat steps from 4.3.

Endif

Algorithm 4: Scheduling at Grid Broker Level

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 24 Volume 14, 2015

4.2 Simulation Results

The HRL_LBFT algorithm is evaluated for the above

defined metrics. The results are compared with Min-

min, FTMM, BSA, LBFT and LBEGS algorithms.

 The makespan values of the algorithms

such as HRL_LBFT, Min-min, FTMM, BSA, LBFT

and LBEGS are shown in figure 3. The results show

that the proposed HRL_LBFT has minimized

makespan than the other algorithms. The Min-min is

a benchmark algorithm for measuring the scheduling

algorithm’s performance based on makespan. But it

is noted that the makespan of proposed HRL_LBFT

has a notable improvement over Min-min.

Fig. 3 Performance based on Makespan (sec)

The hit count values of the algorithms such as

HRL_LBFT, Min-min, FTMM, BSA, LBFT and

LBEGS are shown in figure 4. The results show that

the proposed HRL_LBFT has highest hit count than

the other algorithms. Since LBEGS only concentrates

on load balancing, the hit count is very low when

compared with other algorithms.

Fig. 4 Performance based on Hit Count

The deadline hit count values of the algorithms such

as HRL_LBFT, Min-min, FTMM, BSA, LBFT and

LBEGS are shown in figure 5. The results show that

the proposed HRL_LBFT relatively has a high

number of deadline hits than the other algorithms.

Since LBEGS doesn’t concentrate on user

satisfaction, its deadline hit count is low when

compared to BSA and HRL_LBFT which considers

user satisfaction.

Fig. 5 Performance based on Deadline Hit Count

The average resource utilization of the algorithms

such as HRL_LBFT, Min-min, FTMM, BSA, LBFT

and LBEGS are shown in figure 6 and the results

shows that the proposed HRL_LBFT relatively has

high resource utilization than Min-min, FTMM and

BSA, but nearly same utilization as LBFT algorithm.

 Communication time is a measure of

overhead due to transfer of tasks from one level of

hierarchy to another. The centralized LBFT

algorithm and the proposed hierarchical HRL_LBFT

algorithms are compared in figure 7 based on this

metric in order to prove the efficiency of hierarchical

approach. The results show that the hierarchical

approach reduces the communication time in a

remarkable way.

 The average percentage improvement of

HRL_LBFT based on makespan towards Min-min is

34.8%. With FTMM, the percentage improvement is

28.3 % and towards BSA, an improvement of 17% is

achieved. When compared with LBFT, it shows an

average percentage improvement of 12.4% and with

LBEGS, it shows 16.4% improvement. The average

percentage improvement of HRL_LBFT based on hit

count towards Min-min is 28.2%. With FTMM, the

percentage improvement is 13.2 % and towards BSA,

an improvement of 3.5% is achieved. When

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 25 Volume 14, 2015

compared with LBFT, it shows an average

percentage improvement of 1% and with LBEGS, it

shows 18.2% improvement.

Fig. 6 Performance based on Average Resource

Utilization

Fig. 7 Performance based on Communication

Time (sec)

 The average percentage improvement of

HRL_LBFT based on deadline hit count towards

Min-min is 33.4%. With FTMM, the percentage

improvement is 25.6 % and towards BSA, an

improvement of 3% is achieved. When compared

with LBFT, it shows an average percentage

improvement of 1.8% and with LBEGS, it shows

34.2% improvement. Based on resource utilization,

the HRL_LBFT algorithm has a percentage

improvement of 19.5% over Min-min, 13.3% over

FTMM, 11% over BSA, 0.8% over LBFT and 0.5%

over LBEGS. Based on communication time,

HRL_LBFT performs better with a percentage

improvement of 12.4% over LBFT.

5 Conclusions and Future Work
In this work, a scheduling algorithm taking user

satisfaction, load balancing, and fault tolerance into

account is proposed. Scheduling is done at three

levels such as machine level, resource level and grid

broker level. Because of this hierarchy considered,

the communication time is minimized that in turn

minimizes the makespan. Currently many works are

carried out separately for load balancing, fault

tolerance and user satisfaction. But this proposed

work gives a combined solution with all these

factors.

 The efficiency of this algorithm is proved

with the evaluation parameters such as makespan,

deadline hit count, hit rate, resource utilization,

average resource utilization and communication

overhead. In this work, the tasks considered are

computation intensive tasks. In future, data intensive

tasks can also be considered for scheduling and this

can be again extended with the factor of security in

grid which would lead to an efficient work that can

be used in computational grid. Also, like user

deadline, the budget for task execution can also be

obtained as a task requirement from user and

scheduling can be done considering it.

References

[1] Hao Y, Liu G. and Wenc N, An enhanced

load balancing mechanism based on deadline

control on GridSim, Future Generation

Computer Systems, Vol.28, 2012, pp. 657-

665.

[2] Suresh P, Balasubramanie P, Grouping based

User Demand Aware job scheduling

Approach for computational Grid,

International Journal of Engineering Science

and Technology, Vol.4, No.12, 2012,

pp.4922-4928.

[3] Payli R.U., Yilmaz E., Ecer A., Akay H.U.

and Chien S., DLB- A Dynamic load

balancing tool for grid computing, The

Journal of scalable computing, Vol.7, No.2,

2006, pp. 15-23.

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 26 Volume 14, 2015

[4] Yagoubi B. and Slimani Y., Load balancing

strategy in grid environment, Journal of

Information Technology and Applications,

Vol.1, No.4, 2007, pp. 285-296.

[5] Li K, Optimal load distribution in non

dedicated heterogeneous cluster and grid

computing environments, Journal of Systems

Architecture, Vol.54, 2008, pp. 111–123.

[6] Salehi M.A., Deldari H. and Dorri B.M,

Balancing Load in a Computational Grid

Applying Adaptive, Intelligent Colonies of

Ants, Informatics, Vol.32, 2008, pp. 159-

167.

[7] Li Y., Yang Y. and Zhou L, A hybrid load

balancing strategy of sequential tasks for grid

computing Environments, Future Generation

Computer Systems, Vol.25, 2009, pp. 819-

828.

[8] Yagoubi B. and Meddeber M, Distributed

Load Balancing Model for Grid Computing,

Journal of Computer Science, Vol.12, 2010,

pp. 43-60.

[9] Yan K.Q., Wang S.S., Wang S.C. and Chang

C.P, Towards a hybrid load balancing policy

in grid computing system, Expert Systems

with Applications, Vol.36, 2009, pp. 12054-

12064.

[10] Kumar K, A Dynamic Load Balancing

Algorithm in Computational Grid using Fair

Scheduling, International Journal of

Computer Science, Vol.8, No.1, 2011, pp.

123-129.

[11] Payli R.U., Erciyes K. and Dagdeviren O,

Cluster-Based Load Balancing Algorithms

for Grids, International Journal of Computer

Networks & Communications, Vol.3, No.5,

2011, pp. 253-269.

[12] Kokilavani T, Load Balanced Min-Min

Algorithm for Static Meta-Task Scheduling

in Grid Computing, International Journal of

Computer Applications, Vol.20, No.2, 2011,

pp. 43-49.

[13] Qureshi K., Reman A. and Manl P, Enhanced

GridSim architecture with load balancing,

The Journal of Supercomputing, Vol.57, No.

3, 2011, pp. 265-275.

[14] Balasangameshwara J. and Raju N, A hybrid

policy for fault tolerant load balancing in

grid computing environments, Journal of

Network and Computer Applications, Vol.35,

2012, pp. 412-422.

[15] Bardsiri A.K. and Rafsanjani M.K, A New

Heuristic Approach Based on Load

Balancing for Grid Scheduling Problem,

Journal of Convergence Information

Technology, Vol.7, No.1, 2012, pp. 329-336.

[16] Raj J.S., Hridya K.S. and Vasudevan V,

Augmenting Hierarchical Load Balancing

with Intelligence in Grid Environment,

International Journal of Grid and

Distributed Computing, Vol. 5, No. 2,

2012, pp. 9-18.

[17] Hwang S. and Kesselman C, A Flexible

Framework for Fault Tolerance in the Grid,

Journal of Grid Computing, Vol.1,

2003, pp. 251-272.

[18] Dabrowski C, Reliability in grid computing,

International Journal of Computer Science,

Vol.8, No.1, 2009, pp. 123-129.

[19] Latchoumy P. and Khader S.A.P, Survey on

Fault Tolerance in GridComputing,

International Journal of Computer Science &

Engineering Survey (IJCSES), Vol.2, No.4,

2011, pp. 97-110.

[20] Priya B.S, Fault Tolerance and Recovery for

Grid Application Reliability using Check

 Pointing Mechanism, International Journal

of Computer Applications, Vol.26, No.5,

2011, pp. 32-37.

[21] Keerthika P, Kasthuri N, An Efficient Fault

Tolerant Scheduling Approach for

Computational Grid, American Journal of

Applied Sciences, Vol. 9, Issue 12, 2013, pp.

2046-2051.

doi:10.3844/ajassp.2012.2046.2051.

[22] Suresh P, Balasubramanie P, User Demand

Aware Scheduling Algorithm for Data

Intensive Tasks in Grid Environment,

European Journal of Scientific Research,

Vol.74, No.4, 2012, pp.609-616.

[23] Keerthika P, Kasthuri N, An Efficient Grid

Scheduling Algorithm with Fault Tolerance

and User Satisfaction, Mathematical

Problems in Engineering, Volume 2013,

Article ID 340294, 2013.

[24] Keerthika P, Kasthuri N, A Hybrid

Scheduling Algorithm with Load Balancing

for Computational Grid, International

Journal of Advanced Science and

Technology, Vol. 58, 2013, pp.13-28.

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 27 Volume 14, 2015

[25] Suresh P, Balasubramanie P and Keerthika P,

Prioritized User Demand Approach for

Scheduling Meta Tasks on Heterogeneous

Grid Environment, International Journal of

Computer Applications, Volume 23, No.1,

2011.

[26] Suresh P, Balasubramanie P, User Demand

Aware Grid Scheduling Model with

Hierarchical Load Balancing, Mathematical

Problems in Engineering, Volume

2013,Article ID 439362, 2013.

WSEAS TRANSACTIONS on COMPUTERS Keerthika P., Suresh P.

E-ISSN: 2224-2872 28 Volume 14, 2015

